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ABSTRACT

Conventional most probable number (MPN) methods seek a calculated value
Jor microbial concentration (A, mL") which induces the total binomial probability
Sunction (P,,,) to approach its maximum limit. In fact, such techniques are the
only statistically compelling procedures available for determining MPN when
utilizing a small set of observations per dilution (e.g., n = 3-8). However, as n
approaches a large value, statistical routines which assume a normal distribution
might be applied to ascertain the MPN. With this in mind, we produce herein a
modified Gauss-Newton “linearization” (curve fitting) algorithm for determining
A (n = 96) from binomial micro-plate assays which are readily automated using
96-well micro-plate readers. This technique, an iterative protocol, is less
cumbersome than many traditional MPN procedures and has certain advantages.
Data derived from this method were not only close to MPN estimations using a
direct technique based on the conventional maximum probability resolution (MPR)
concept but also displayed more favorable chi-squared (*) statistics.

'Reference to a brand or firm name does not constitute endorsement by the U.S. Department of
Agriculture over others of a similar nature not mentioned.
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INTRODUCTION

For many microbiological applications it is only feasible to estimate microbial
concentration using the dilution method (Barkworth and Irwin 1938; Dickson
1989; Best 1990; Blais and Yamazaki 1991; Turpin et al. 1993). Specifically, the
dilution method consists of taking a sample from a liquid source, making serial
dilutions from it, introducing an aliquot of each of the dilutions into an appropriate
culture medium, incubating samples at a suitable temperature, and observing if any
growth (e.g., number of positive samples, p, out of n observations) occurs. One of
the most critical steps in the satisfactory application of the dilution method is
obtaining a statistically cogent estimation of the “most probable number” of
organisms (MPN) in the original sample. The MPN concept is quite venerable
inasmuch as its formal description was first made in 1915 (McCrady 1915).
McCrady’s reckoning of MPN is based on the application of binomial probability
theory, and it depends upon 2 primary assumptions: microbes are distributed
randomly throughout the test fluid and growth occurs if the aliquot used contains
one, or more, organisms (McCrady 1915; Cochran 1950). In 1969, Fung and Kraft
miniaturized the dilution method using “microtiter” plates in an 8 dilution, 3
replicates (n = 3) per dilution MPN format whereas Rowe et al. (1977) expanded
this procedure to 12 dilutions and 8 replicates (n = 8) per dilution. Computer-based
computational methods (Best 1990; Briones and Reichardt 1999) for the estimation
of MPN are similar, in principle, to earlier efforts (McCrady 1915; Halvorson and
Ziegler 1933) which are the only statistically valid procedures available for
determining MPN when utilizing a small set of observations (n) per dilution (Rowe
et al. 1977; Haines et al. 1996; Humbert et al. 1997).

In this manuscript, we developed a nonlinear least squares method for
determining MPN when n = 96 using micro-plate turbidity assays, and
quantitatively compared this technique with a conventional MPN estimation from
the same data. We have arbitrarily chosen n =96 (8 x 12 wells per plate) since this
is the standard plate format with micro-plate readers. Thus, each 96-well plate
represents one dilution. Also, 96 wells x 50 pL per well gives 4.8 mL of sample
used per dilution and is similar to the traditional 5 tube multiple dilution MPN (de
Man 1975, 1983). The more observations per dilution one makes the greater the
accuracy of the calculation. Most curve fitting procedures (Hartley 1961; Draper
and Smith 1980) are somewhat tedious to perform as matrix transposition,
multiplication, and inversion are involved. However, because our method involves
only a one parameter fit (e.g., solving for the MPN), the algorithm is more
straightforward than many traditional MPN computational procedures (Best 1990;
Briones and Reichardt 1999) and has some compelling advantages.
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MATERIALS AND METHODS

General

All bacteria used in this research were Salmonella enteritidis (avian isolate from
Dr. K. Rajkowski [USDA, ARS, Eastern Regional Research Center]; identification
confirmed by comparisons of ribosomal DNA with known S. enteritidis isolates
and various biochemical tests). Brain-heart infusion agar (BHIA) and broth (BHI)
were obtained from Difco (Detroit, MI). Rainbow agar (RA), selective for
hydrogen sulfide-producing strains of Salmonella, was obtained from Biolog, Inc.
(Hayward, CA). After plating onto BHIA and RA (6 plates each) with an

Autoplate 7000 “spiral” plating apparatus (Spiral Biotech; 50 uL per 10 cm plate)
and incubating for 16-18 h at 37C, total aerobic plate count cell density (3) was
determined by manual colony counting. We utilize the terms & and A which
represent measures of solution cell density. However, 6 is based on petri plate
colony counting and has dimensions of either mL™' or colony forming units mL™!
(CFU mL™). The equivalent term (A) derived from binomial enumeration methods
has units of either MPN mL"' or mL"'. Both 8 and A should numerically agree (+
10-15%) for pure cultures. Typically only serial dilutions estimated to contain
1,000-2,000 CFU mL' were utilized for total aerobic plate count (e.g., 50-100 CFU
per plate). Phosphate-buffered saline (PBS; 100 mM, 0.85% [w/v] NaCl, pH 6.7)
was used as the diluent throughout.

Ninety-Six Well Micro-Plate Assays

“Microtiter” or micro-plate turbidity assays (Irwin et al. 2000; n = 96) were used
as our binomial method. For each Salmonella dilution to be enumerated, a 150 pL.
aliquot of sterile BHI was pipetted into every well of disinfected 96-well micro-
plates (one plate per dilution) and 50 pL of inoculum introduced (PBS alone or
PBS-diluted cells; 0-70 CFU mL™"). All plating was performed in a Type II Vertical
Microbiological Hood. Inoculated plates were stored in a sterile container and
incubated overnight at 37C. After 16-18 h, the number of positive responses (p),
based on turbidity, was recorded. Visual and optical density (OD on a Perkin-
Elmer HTS7000+ plate reader) turbidity determinations produced identical results.
Figure 1 displays optical density (A = 492 nm) as a function of incubation time for
3 representative positive sample wells inoculated with 50 uL of ca. 3 CFUmL"' S.
enteritidis whereupon the time to approximately half-maximal optical density (f)
was between 8-9 h postinoculation (AOD,; ., ~ 0.4). The inset of Fig. 1 displays
the optical density dependence upon bacterial concentration (i.€., standard curve)
where the limit of detection was approximately 10* CFU mL"'. Thus, presence or
absence of turbidity is determinable with a micro-plate reader in ca. 9 h
postinoculation. Using this technique, and the computations which follow, we

observe a limit of detection of about 0.4 mL" (based on Appendix).

R6865-03



P.IRWIN, S. TU, W. DAMERT and J. PHILLIPS

n=96
p = 12 {only 3 shown)
18 v
1.2 1

12+
= 8
g p=8.06h
S 081 o061
<
n
< ¢
Pr)
g 0 t + $ {
8 0 1E409 2E+09 3JE+09 4E+09
% 04+ Salmonella enteritidis / mL*
o
a
o

0 t t } i
3 5 7 9 11

Incubation Time at37 C/h

FIG. 1. TIME DEPENDENCE OF SALMONELLA ENTERITIDIS TURBIDITY AS DETERMINED BY
OPTIAL DENSITY (OD, A = 492 NM) USING A 96-WELL MICRO-PLATE READER (T = 37C)

Upon sufficient dilution, assuming a random sampling, our 96-well micro-plate
assay allows only two possible outcomes: the volume (v) to be tested either does (p
= positive) or does not contain the organism and represents, by definition, a
binomial population (Steel and Torrie 1960). Thus, the probability, P;, (McCrady
1915; Halvorson and Ziegler 1933) of observing p; positive responses out of n
samples after inoculating each with some volume (v;) is

alie "4 M1-¢ Y
(@ - p) p!

P, =

0]

By normalizing the derivative of P; with respect to A and setting this equal to 0 it

is possible to find the value of A that corresponds to the maximum value of P; (e.g.,

the MPN; Best 1990; the symbolism, 3, y = éi, is utilized throughout this work)
x
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AR 4] J
S =ip -+t |y =0, Q)
I ) M
Solving Eq. 2 for p, yields
p=n-e™"*n. ®

Since a sequence of dilutions, each of volume v;, is equivalent to the product of a
fixed volume, v, and dilution factor ®,

vi=vd “)
then
p=n-e"%4p, ®)
The experimental varisble @,
Befi-
=TT — Ve
bt Vin + Vatont | ©)

is a coefficient which defines each i* dilution; for example, the dilution factor for
the 11" sample in a serial dilution (®, = 1 for the initial, or undiluted, sample) is

v v v
(D" = 10 X 8 X one X i : o)

Vio + Vawent Vo *+ Veent Vi + Vet

v; (Eq. 7) is the volume taken from the i* sample utilized to make the {i + 1)*
dilution by adding vy, of buffer. Th , Eq. 5 quantitatively describes the
relationship of p; as a function of &, at fixed v and A.
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Maximum Probability Resolution Methods (MPR): Traditional MPN
Calculation on Microsoft Excel®

MPN calculations can be performed using one of two schemes. The direct
method involves calculating the full array of P, (= I, P)) as a function of A and
finding the value of this variable which corresponds to the maximum in P, (i.e.,
the MPN). Alternatively (Best 1990, Briones and Reichardt 1999), one can take
advantage of the fact that A approaches the MPN where 9,P,,,;, or some related
function (Eq. 2), approaches zero. For example, the single dilution 9,P or 3,P/P
(Eq. 2) equations, when set to zero, can be easily solved for A (Halvorson and
Ziegler 1933)

Loge _n.__

A=—""P ®

vo
Of course, multiple dilution MPN calculations are more involved than the single
dilution case since A, the cell density of the starting dilution (®, = 1), can not be
evaluated directly. To overcome this limitation, using the direct MPR method as
an example, final values for MPN (Table 1) were determined with an Excel protocol
which performs a calculation that picks the MPN directly from a large total
probability array: P, =P,x P, x .. x P, =II, P, calculated as a function of A (1000
A points per P)); Fig. 2 defines the approximate ‘start’ and ‘end’ limits. Thus, a
large (for 3 dilutions, 440 Kb) spreadsheet was created and an Excel function
utilized to pick the maximum value in Py, ([P\ou]ma)

=MAX(P.) (9a)

and then look up

=MATCH([P o )maxs Protas 0) (9b)

the row containing the A value associated with [P,y ] Which is the MPN (bold
characters represent arrays of calculations or numbers within an Excel worksheet).
Table 1 compares MPN values from this MPR method with those obtained from a
well-known three dilution MPN Table (de Man 1983). These data show close
agreement (average absolute value deviation was ca. 2% mostly due to rounding-off
differences) between the MPR protocol and de Man’s calculations. The MPR A,
(or MPN) error term was calculated as
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1

Ompr =

VO Bpon

i1 (e

__1Y

- Py (V(Dl)zem'A“ '

(9¢)

TABLE 1.
3 DILUTION MPNS: TABULAR (DE MAN 1983) AND THE MAXIMUM PROBABILITY
RESOLUTION (MPR) METHOD
MPN (n = 5)

P P2 D3 Table MPR + o©
5 5 0 24 24.00 135
5 4 4 35 34.50 14.61
5 4 3 28 27.81 12.24
5 4 2 22 22.08 10.19
5 4 1 17 17.22 8.46
5 4 0 13 13.00 6.97
5 3 2 14 14.04 6.58
5 3 1 11 10.88 5.63
5 3 0 8 7.91 4.60
5 2 2 9 9.45 479
5 2 1 7 7.00 3.96
5 2 0 5 493 2.92
5 1 2 6 6.30 345
5 1 1 5 4.56 2.59
5 1 0 3 3.30 1.86
5 0 1 3.1 3.14 1.72
5 0 0 23 2.31 1.28
4 4 0 34 3.35 1.41
4 3 1 33 3.26 1.36
4 3 0 27 2.7 1.19
4 2 1 2.6 2.65 1.15
4 2 0 2.2 2.16 0.99
4 1 1 2.1 2.1 0.97
4 1 0 1.7 1.69 0.83
4 0 1 1.7 1.66 0.81
4 0 0 1.3 1.27 0.68
3 3 0 1.7 1.72 0.75

dy=1, @, =1, 0,=0.1, &;=0.01
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FIG. 2. DEFINITION OF THE BEGINNING AND ENDING LIMITS FOR THE TOTAL BINOMIAL
PROBABILITY DISTRIBUTION FUNCTION (P,,,, = ILP,) UTILIZED FOR THE DIRECT
DETERMINATION OF MPN

RESULTS AND DISCUSSION

All MPN methods with which we are familiar with either utilize some
mathematical manipulation of Eq. 2 in order to locate the value of A which induces
the foral probability distribution function (P,,,,) to approach its maximum limit, or
directly calculate P, and search for the maximum probability and associated MPN.
Such MPR methods are the only statistically persuasive protocols available for
determining MPN for small n (Rowe et al. 1977; Haines et al. 1996; Humbert et al.
1997). The benefit of numerically determining MPN in this way, over using a table
(de Man 1975, 1983), is that any number of dilutions or assay volumes can be
utilized within each interdependent data set thereby gaining greater experimental
flexibility (Briones and Reichardt 1999). However, asn approaches a large number

(e.g., n = 96), the P distribution with A becomes almost Gaussian or normally-
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distributed. For instance, Fig. 3 displays plots of J,P and P (single dilution; A: n
=§; B: n =96; p = /2 in both; all data normalized) as well as the best-fit Gaussian
based on nonlinear regression of 26 evenly-spaced points from each P array. In Fig.
3A, P (n = 8) is quite asymmetrical as evidenced by its skewed first derivative (,P)
and the Gaussian does not fit P well. However, when n = 96 (Fig. 3B) 9,P is nearly
symmetrical and the Gaussian fit is similar to P. The nearly-symmetrical binomial
probability distribution at large n, as well as a necessary abatement of rounding-off
and sampling errors, might imply that methods which assume a normal distribution
could be used to determine MPN. If this is true, we should be able to directly fit
binomial data (p,), collected as a function of various dilutions (®)), to an appropriate
function (Eq. 5) using nonlinear regression analysis and thereby calculate the MPN
(Ag.a), and agree with conventional estimations, in a one parameter fit.

MPN from Nonlinear Regression

Numerical methods used to fit nonlinear functions to various empirical
observations have been available for nearly 40 years (Hartley 1961). The most
commonly used techniques for curve fitting, or nonlinear least squares
approximations, are “linearization”, “scoring”, “steepest descent” and “Marquardt’s
compromise” (Afifi and Azen 1979; Draper and Smith 1980). We have chosen the
modified Gauss-Newton linearization (Hartley 1961) approach because it is one of
the most common techniques used for curve fitting in statistical software packages
(Afifi and Azen 1979). To fully realize such a curve fitting-based MPN algorithm,
we first manifest the method in a general form in order to derive our much simpler
version. Thus, we collect Y, (1= 1, 2, ..., I; for this work Y, = p;) data as a function
of the controlled variable X, (®,) which we desire to fit to a model F, (e.g., Eq. 5)
dependent upon parameters Q; (j = 1, 2, .., J; for this work Q = A). For Q, near QJ.° R
an initial guess, F, is expanded about Q,.° in a “Taylor series”. Using only first order

terms,
J

J
F=F7+ Y 00F (Q-Q)) =F + 3.2, AQ]

< = (10)

and
P =F->Z,AQ7; (1)
J

Z;; are elements of the matrix Z (e.g., I rows x J columns as found in a spreadsheet)

aQ.F1 212 : Zu

Z= 221 ao,Fz o Z,
5 PR (12)

Zn le a0 Fl

)
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FIG. 3. PLOTS OF P, 3,P, AND THE BEST FIT GAUSSIANS
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The difference between Y, and F, calculated with Qj° is
AY,=Y,-F°. (13)

Combining Eq. 11 and 13, the error sum of squares is

ESS =Y (aY,). (4

=t
To minimize, the partial first derivatives of ESS with respect to each j* parameter

(J derivatives) are set to zero, rearranged, and simplified such that for any particular
parameter Q,

1
Z(Zwizij)AQ?] (15a)

or, for all Q,,
Y1 - F10 Q1 - Q?
Y, - Q,-Q;
7! 2:2 =2'7 2: 21=2'2 AQ°. (15b)
Y, -F? Q,-Q;

We seek a solution for AQ®, a Jx1 array, therefore each side of Eq. 15b is
multiplied by the matrix inverse of Z'Z (Z' is the transposition of Z) to achieve

AQ=(Z'Z)' Z'(Y-F) (16a)

Utilizing Excel format (evaluated using * Ctrl + Shift + Enter”) and keeping in mind
that Z {I x J}, Y-F {I x 1}, and AQ® {J x 1} represent arrays of formulas,
AQ° = MMULT(MMULT(MINVERSE(MMULT(TRANSPOSE(Z),Z)),
TRANSPOSE(Z)),Y-F). (16b)

In practice, a distinct AQ* array is generated at each k" iteration and the appropriate
j™ elements of AQ* are arranged to be automatically added to the various
parameters used in the computation of AQ**, etc. (Irwin et al. 1994, 2000).
Eventually these results converge when AQ* no longer changes during successive
calculations; ideally, upon convergence (k = K),
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~0 (16¢)

Applying Eq. 16ato Eq. 5 (e.g., F;=p,=n -¢ ™% n, 3,F, = ¢ "*®* nv®i, Q= A, and
dropping the superscript notation) simplifies to the straightforward evaluation

Z(Yu _Fi)aAFI

AQ=—t ‘ (172)

2.(.FY

i
InFig. 4 (I =12, J = 1) we solve for a new estimation of A (cell F4) as

A =A+xAQ . (17b)

new

Using Excel’s formulaic protocol, we input into cells F4, F6, {H2:H13}, and
{D2:D13}, respectively

=F2+0.1* F6, (17¢)
=SUM((H2:H13)*(D2:D13))/SUM((D2:D13)2) 79)
={C2:C13} - (SE$2*(1-EXP(-SE$4*$F$2* (B2:B13}))) , (17¢)

e =({B2:B13)*$E$2*$ES4)*EXP(-(B2:B13}*$F$2*$ES4) . (79

In Eq. 17d-f the symbols “{ }” bracket arrays of relative, or positional, references;
for example, within cell HS, Eq. 17¢ appears as
“=C5-($E$2*(1-EXP(-$E$4*$F$2*B5)))”
while in cell H11 it appears as
“=C11-($E$2*(1-EXP(-SE$4*$F$2*B11)))”.
Cell references given as “SLETTERSNUMBER” remain fixed regardless of
position within an array. Equation 17d (cell F6) operates on data from several cells
simultaneously and is only accurately evaluated when key-strokes “Ctrl + Shift +
Enter” are used to “Enter” the expression. In Eq. 17c, cell F6 is multiplied by 0.1
() in order to slow down the rate of change in AQ and thereby avoid problems
overshooting the sought-after value of A (e.g., A is the MPN only with a minimized
sum of squares; Eq. 13). Diminishing AQ in this way allows the use of very poor
initial estimates for the MPN yet solve the problem quickly. For instance, when
2000 mL"' was used in Fig. 4 as an initial estimate of A, the spreadsheet converged
promptly (~ 160 iterations; ~ 1 s) even though AQ started at -5824. Lastly, by
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applying the theory of linear regression to the approximate linear equation we
obtain an expression for the standard error for Ag, (the “asymptotic standard
error”, Draper and Smith 1980; Irwin et al. 1994)

S Y ~Fora )’

] i . (18a)
V(iz (aéF%.FimﬁY} I-1

To calculate Eq. 18a (Fig. 4) with Excel we make cell F8 contain the formula

sérm -

=SQRT(SUM((H2:H13)"2)(SUM((D2:D13)"2)*
(COUNT(C2:C13)-1))) (18b)

and evaluate the expression upon using keystrokes “Ctrl + Shift + Enter”.

In Fig. 4 an initial guess (200 mL"'") for A was introduced in cell F2 and the
spreadsheet recalculated. Cell F2 was then made equal to F4 thereby creating the
circular reference needed to start the iterative solving process and the calculation
converged (~ 35 iterations) when the arrays ceased to change at the chosen
numerical precision. Figure 4 also displays a plot of the binomial data p, as a
function of dilutions @, as well as initial (shown for both 30 and 200 mL"") and final
{(~ 67 mL") values of A. Regardless of the starting value for A, the calculation
always converged to 66.8 + 2.0 mL"" which is close to (65.9 + 3.6 mL"") the MPN
from the maximum probability resolution protocol discussed in the Methods
section.

Comparison of The MPN Protocols

Comparisons of the MPN methods (MPR and CF) using the same data sets are
shown in Fig. 5 and Table 2. MPN values (20 experiments) from curve fitting
(Agaacr Eq. 17, x =0.1;  €,) are displayed plotted against those (Agny aers EQ. 9
+ Oypg) based on the traditional MPR technique and show an almost perfect
correlation (slope and r* of 0.99; Fig. 5). The inset scatter plot (Fig. 5) displays all
the observed positive responses (p, out of n = 96} as a function of normalized
dilution terms and demonstrates the high precision gained by performing the
dilution method using large n. Quantitatively (Table 2), the two methods differed
in MPN (or Ag,y) only by about 3% and displayed similar chi-squared (x°) statistics
albeit the CF method was slightly better on average. While the agreement with total
acrobic plate count (8) was not perfect, the two MPN protocols averaged (absolute
value) a modest 7% deviation with respect to 8; the CF approach was slightly better
than the MPR method (Table 2). In general, the two MPN methods exhibited
excellent agreement.

The curve fitting protocol which we have applied herein should only be used for
large n (minimized rounding and sampling errors). To illustrate this concept we
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FIG. 5. COMPARISON OF CURVE FITTING (CF) AND MAXIMUM PROBABILITY RESOLUTION
(MPR) DETERMINATIONS OF MPN + THEIR RESPECTIVE ERROR TERMS

present comparisons of MPN values for the 3-dilution calculation with varying n (n
=5, n =15, and n = 96; Table 3). For n = 15 and 96 the p-triads were made
equivalent with respect to the MPN calculated from the n = 5 values therefore
unlikely combinations were not presented; of course, improbable combinations of
p; are less likely to occur with greater n. The disagreement between the traditional
MPN calculation (MPR, Table 3) and our curve fitting method (CF) averaged 238%
forn =5, ~ 2.46% for n = 15, and 0.288% (Table 2 deviations [absolute value]
averaged ~ 3%) for n =96. So, it would appear that the curve fitting MPN method
could be utilized for n >15. However, for our micro-technique turbidity assay, n =
96 produced excellent results and a reasonably low limit of detection (Appendix).

R6865-15



P.IRWIN, S. TU, W. DAMERT and J. PHILLIPS

W ‘poyaw Nd Bury aasno

0661 1seg : mq:v._h P2
z
T poLIaw NI (feuolipes}) uonnjosal Aiqeqoud wnwixew

W n3) seled viHE € Pue vy ¢ jo abesane junoo ejed 21Iq0soe (€10]

%0€EE 9z'e 66'Z 16 SOY %6L'9 %90'L i x| jo abesane
2 %9 3 L 262 4 z vz %1€ %Ee- 9'€e (74
14 %t b L £92 i z ¥'sZ %Gh- %61~ zoe 6L
12 %9 14 € gey g € Siv %2} %L 1'8¢ 8
12 %€ z 2z 10§ z v 818 %6 %z} sy i
12 %0 9 S zze 9 S z'29 %L %L~ £99 9
v %9 z z 'S € € [: 1> %9~ %1 [ St
12 %L 4 S S6L ¥ L €58 %L %8 682 I
12 %E € z L'ES ¥ 2 4] %4~ %\ 6'€S €L
12 %2- 4 z 195 4 14 9'6S %2 %0 =3 2L
12 %E z z 05 z 14 815 %bi %91 ey 13
12 %0 [ € [4:14 oL £ 8y %Z4 %1 8Ty o
S %E- 9 v 128 9 v 665 %0 %E- 928 6
S %1 14 v 85 14 12 185 %2- %Z- 1'68 g
S %L € S 126 € 9 66 %Y %9 ¥'68 p3
S %L~ € v £66 € 9 v'v6 %1 %0 6 9
S %2 i 4 ] L 9 '8 %2- %0 98 [
S %Z 9 14 v'E9 9 [ %9 %0 %2 €9 v
S %G 9 9 Lv8 9 [ 608 %EL %6 8€L €
S %L- | z 8ve 1 4 €99 %S %y L] z
L %t - S L 602 8 L 681 %0 %L1~ 012 [
suoEp T ww T X T3=®o T yin 0 X e T guan oy - ) Jdxe
B g 3
SINAWRIAdXd 02 SSOYOV

(V) $T000.L0¥d NdIN 4074dIN ANV (2) DNILNNOD FLV1d WOIA NOLLVITWNNAE SIGILI¥TINT VTTANOWTFS 10 NOSRIVANOD
TaI1avL

R6865-16



100="®'10=20"'L="'D'L =A,

CALCULATING MPN USING EXCEL

%6Z°0 %92 %8EZ  : juonewapl ‘e

%Ly'0 we 9z zZ iz 88 %L¥0- gv'z YT 0 £ ¥ %L2E°SE syl 622 € 0 ¥
%000 91'e glI'e € 9z 6 %G1 8- 26T 012 0 v bl %S0°LE 6L S0E £ 4 14
%¥L'0-  P6EL 26°€l £t 2L 96 %ES0- 2Ll sZel Z M S %E0 L} SrilL 08'ch zZ € ¢
%Ly0- ST 8i'Z) St 6L 96 %09'L- €8S} 9SSl zZ e S %2 6TH- 9g'16 9z'LL € € ¢
%8Y0-  6L02 6902 Bt $8 96 %94 1102 a4 £ € S %62°0/9-  ¥6091 8802 ¥ € S
uoneirsp 40 HdW d W d uoneinap 40 Hd g W d uopeirsp 40 HaW dod Md

96 = v Sl=u S=u
N~ — B LT

(u) NOILNTIA YAd SNOLLVAYASHO 40 NOLLONNA V SV SAOHLIW (42) ONILLIA FAAND
ANV (4dIW) NOLLNTOSTY ALITIEVEONd WNWIXVIN FHL WOYA NOLLVIZIWNNG NdW NOLLNTIA-€ QLY INDTVD A0 NOSRIVAWOD
‘t 41dVL

R6865-17



P.IRWIN, §. TU, W. DAMERT and J. PHILLIPS

Advantages of the Curve Fitting MPN Method

The CF method has several advantages over the MPR method described herein.
It is much simpler to set up (Fig. 4) inasmuch as the direct method (I = 7) requires
1000 cells for each dilution i and an additional 1000 for the product (P.,).
Secondly, the CF MPN calculation is faster. Less than 1 s (500 MHz, Pentium III;
ca. 150 iterations s™') are required to calculate A, even when the initial guess is off
by several orders of magnitude. For instance, Fig. 6 shows values for A (calculated
from the p,-®, pairs of Fig. 4) from the CF (Eq. 17; k = 0.1; ~ 70 iterations)
algorithm as a function of the number of iterative cycles. Even though the initial
value used for the calculation was poor (1000 mL"'") the CF method converged to
66-67 mL"' in nearly 25 iterations. Contrariwise, the direct MPR method takes
several minutes to set up (e.g., mainly determining the A_,, and A,,,, Fig. 2). A
third advantage for performing our curve fitting MPN protocol over the traditional
MPN method is that blank (diluent alone; p ~ 0) observations are used thereby
gaining an additional degree of freedom. Lastly, since the curve fitting protocol is
a correlation it has a more visual basis for rejection of data since excessive scatter
is indicative of a dilution error. The closest standard for the rejection of traditional
MPN data is the far less intuitive ¥ statistic (Best 1990).

APPENDIX

One of the advantages of binomial methods is that they have very low limits of
detection (LOD) relative to plate counting methods. Ordinarily, the limit of
detection of any procedure is related to the intercept of a standard curve + an error
term. However, binomial assays with a large n have an essentially zero intercept
therefore the linear part (at the limit where the nonlinear function is approximately
linear) of the relationship is

p=mA (A1)
08,0 2
therefore
P Amin
min (A3)
L Tdp= Joa
nv ., 0
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FIG. 6. ITERATIVE BEHAVIOR OF THE CURVE FITTING MPN METHOD WHEN STARTING
FROM A VERY POOR GUESS AT A
Prin .
Apin = ——n"’v“ - (A3)

A, defines the limit of detection (LOD). For p,;,=1, n=96, and v = 0.05 mL the
96-well turbidity assay has a LOD of ~ 0.2 mL"'. However, across the numerous
experiments (described herein) and taking into account the blank standard error
(diluent alone),

Am _ p_mh _ 1+ (5”.“* + 05..‘ too&) - 0.42 mL.1 (Ad)
nv nv ’

Of course, the LOD could be improved by doubling v (and using more concentrated
BHI). An identical LOD is obtained using a modified version of Eq. 8
n
n- (1 + (ﬁmk +05,, tm))
v .

Log,

(A3)
A, =

min
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